
The applications of Statistical Machine Translation tool – PGIZA++

Arkadiusz Szał (Adam Mickiewicz University, Faculty of Mathematics and Informatics)
Giza [1] is a tool designed for the alignment of bilingual corpora at the word level. The program
takes a pair of raw texts as input and returns a set of word pairs (one word in each of the
languages) labelled with the probability of the words being mutual equivalents. Word alignment is
the crucial phase in Statistical Machine Translation ([2], [3], [4]). It may also be used for creating
dynamically expanded lexicons – particularly those oriented for a specific domain.
Giza is reputed to be a powerful tool. Its main drawback however is computational complexity
(squared against the word volume of the corpora). Several extensions to Giza have been
implemented, aiming to decrease the computation time.
The paper compares three implementations of Giza, namely: Giza++, MGiza++,
PGiza++([5], [6]). Giza++ is a single-threated implementation. MGiza++ and PGiza++ use
multiple threats to create output dictionary. MGiza++ is run on one machine with more than one
cores and/or processors. PGiza++ is run on several machines (called also nodes), connected with
each other to form a cluster. On each computer a separate threat is run to carry out computations.
Figure 1) compares the three algorithms (the pictures come from [5]).
In our experiment we used an IBM Blade cluster with the Intel(R) Xeon(TM) processor. Each
node worked on Debian GNU. We compared speed of computation of those three implementations
with different input data and different work environment (32-bit and 64-bit machine).
Our experiments show significant advantage of MGiza++ over Giza++. Comparison of
Giza++ and MGiza++ speed shows the benefit of using multi threads. MGiza+ is several
times faster on a multiple- core processor. Last but not least: MGiza++ is easier to install and
manage.
However, we have found out that the current implementations of PGiza++ do not meet all
expectations. The tool is ineffective, as far as both time and memory consumption are concerned.
There is no evidence that running PGiza++ on a computer cluster may be of any practical use.
We conclude that a new method should be developed that would work on multiple nodes using
multiple cores on each node. The method would take benefits from the fact that MGiza++
weakens the negative impact of the normalisation process in PGiza++.
The idea that we have in mind is alignment symmetrisation with multithread implementation.
Alignment symmetrisation consists in building two-directional lexicons (e.g. French-to-English
and English-to-French) in the alignment process. We will implement symmetrisation after each
step of model iteration. We believe that this improvement should increase the quality of resulting
dictionary in fewer iteration steps. Computations will be executed in two threads – one for each
direction.

Figure 1a Giza++ algorithm Figure 1b MGiza++ algorithm Figure 1c PGiza++ algorithm

[1] Och, J. Franz, Giza++: Training of statistical translation models, 2000
[2] Peter F. Brown, Stephan A. Della Pietra, Vincent J. Della Pietra, Robert L. Mercer, The

Mathematics of Statistical Machine Translation: Parameter Estimation. Computational

Linguistics, 1993
[3] Franz Josef Och, Herman Ney, A Systematic Comparison of Various Statistical Alignment

Models, 2003
[4] Stephan Vogel, Herman Ney, Christoph Tillmann, HMM-based Word Alignment in

Statistical Translation. In COLING ’96: Yhe 16
th

 International Conference on

Computational Linguistics, Copenhagen, Denmark, 1996
[5] Qin Gao, Stephan Vogel, Parallel Implementation of Word Alignment Tool, 2008
[6] Qin Gao, Parallelizing the Training of Statistical Phrase-based Machine Translation

443 words

