A THEORY OF PREDICATIVE STRUCTURE.
INSIGHTS FROM JAPANESE AND KOREAN*

JERZY BAŃCZEROWSKI
Adam Mickiewicz University, Poznań

0. INTRODUCTORY REMARKS

The predicative structure, which is both semantically and syntactically based, does not concern any kind of syntagma, nor does it appear until the sentence level. In the course of our subsequent inquiry, this structure will turn out to be a derivative of a determinational one. As an appropriate framework for capturing some relevant aspects of the latter, within which various determinational systems are operative, we shall consider the theory of determination (cf. Bańczerowski 1980).

The presentation of our approach to the predicative structure will assume the form of a deductive theory, utilizing the apparatus of mathematical logic.**

* The author is extremely indebted to Dr. Dorota Lipowska (Institute of Linguistics, Adam Mickiewicz University, Poznań) for reading the manuscript and correcting the formal shape of some formulae. The author is also very much obliged to James Bruce, B.A. (Syracuse University, Syracuse) for checking the text for linguistic irregularities. And last but not least he would like to express his gratitude to Prof. Dr. Tadeusz Zgółka for his valuable comments.

** Besides the specifically linguistic terms, we shall also employ certain logical terms borrowed mainly from predicate calculus, set theory, the theory of relations and mereology. Their meanings will be explained as follows:

The propositional connectives of negation, conjunction, disjunction, implication, and equivalence will be denoted, respectively, by the symbols: \(\sim, \land, \lor, \rightarrow, \leftrightarrow \). The universal quantifier for every (all) \(x \), and the existential quantifier there is (exists) an \(x \) such that, which bind a variable \(x \), are abbreviated, respectively, with the symbols \(\forall x \) and \(\exists x \). The symbol \(\forall x \) is reserved for the phrase \(\text{there is exactly one } x \text{ such that} \). The symbol \(= \) denotes identity, and the symbol \(\neq \) diversity.

Sets will be designated by capital letters. The set whose elements are \(x, y, z, \ldots \) will be symbolized by \(\{x, y, z, \ldots\} \). Thus, \(X = \{x, y, z, \ldots\} \) means that \(x, y, z, \) are elements of the set \(X \). The formula \(x \in X \) reads: \(x \) belongs to \(X \), or \(x \) is an element of \(X \). The formula \(x \notin X \) reads: \(x \) does not
A theory of predicative structure

1. PRIMITIVE AND SOME DEFINED TERMS

A fragment of the theory of determination, required for the purposes of description of the predicative structure, presupposes the following six primitive terms:

(i) \(Ut \) - the set of all utterances,

(ii) \(Sn \) - the set of all sentences,

(iii) \(Wr \) - the set of all words,

(iv) \(Stg \) - the set of all syntagmas,

(v) \(fr \) - the relation of being a phrase of,

(vi) \(ftd \) - the relation of phrasal determination,

An understanding of the intuitive sense of the above terms is available to an ordinary linguist, and does not require any highly advanced linguistic thinking. What we simply want to say by this is that the concepts denoted by these terms should be relatively easy to identify. Nevertheless, aiming at an avoidance of possible undesirable interpretations we shall give a brief ex-

planation of them. Primitive terms must be available beforehand in order that the development of a formal theory is made possible.

Although the term 'utterance' will rarely be resorted to in our approach, it is a convenient object of reference for some other lingual entities, and therefore we prefer to start our discussion with just this term.

An utterance being a simplex or complex lingual sign and capable of functioning as an autonomous communicative unit, is a stretch of physical, articulatory and acoustic signals, perceived as an auditory object. We shall assume, although it may appear highly controversial, that an utterance, by virtue of being a sign, obligatorily conveys semantic information, i.e. it designates a certain fragment of reality, conceived of in a broad sense, and possesses meaning. Utterances are viewed here as individual, concrete, non-repeatable entities, produced hic et nunc, i.e. by a definite speaker in a definite time and place. Besides this, they will also be treated as mereological wholes.

A sentence is a special kind of utterance. Sentences, as complete communicative units, will be divided here into simplex and complex ones. The set of the former will be denoted by \(Sns \) and the set of the latter - by \(Snc \). These two terms lend themselves to being defined, and their definitions will be formulated subsequently.

A word (= actual lex) is a certain part of an utterance, namely, a minimal unit already provided with both lexical and grammatical information. Thus, inflexional forms, together not only with desinences but also with prepositions, postpositions, articles, and the like, will be treated as wholes sui generis, i.e. words. The following forms are examples of words in English: in a town, on the table, toward the moon, of the friend, etc.

A syntagma is an utterance or part thereof consisting of at least two words. Of course, not every arbitrary expression made up of more than one word will be termed a syntagma, but only a sensical one. Such expressions as: a white flower, a flower of flowers, a flower is blooming, etc. are syntagmas in English. For our purposes, however, the term 'syntagma' will be restricted to hypotactic syntagmas.

Words and syntagmas taken together will be called phrases. The set of all phrases will be denoted by \(Frs \), and formally introduced by means of the following definition:

\[
Df \ 1.1 \quad Frs = Wr \cup Stg
\]

Utterances are but a special kind of phrase. Phrases may often coincide with utterances, but they need not always be appropriate to function as communicative units. They may even be deficient with respect to grammatical information.
The relation of being a phrase of (fr) connects two phrases x and y such that the former is a part of the latter. The formula $x \text{fr} y$ may be read: x is a phrase of y, or x is a phrasal part of y. We can also say that x is a hypophrase of y, and y is a hyperphrase of x.

Having at our disposal the relation fr, we are already able to define the relation of syntagmatization (stg), as well as the sets Sm and Snc referred to above.

Df 1.2

$$\text{stg} = \{(X, y) : X \subseteq \text{frs} \land y \in \text{stg} \land y = S(X)\}$$

On the strength of this definition, a subset of phrases X is combinable into a syntagma y, in symbols: $X \text{stg} y$, if and only if the mereological sum of X results in y. Hence, each phrase belonging to X is a part of y. Since the relation stg is the function:

1.1

$$\text{stg} : \mathcal{P}(\text{frs}) \rightarrow \text{stg},$$

the symbol stg(X) will be employed to denote the unique y being a hyperphrase constructed out of a subset X of phrases. However for the sake of simplicity, in the case of stg($\{x, y\}$) we shall write stg(x, y). Hence it follows that stg(x, y) = stg(y, x). Of course, not every subset of phrases is combinable into a hyperphrase. Some such combinations may result in nonsensical expressions.

Df 1.3

$$\text{Sm} = \{s : s \in \text{Sm} \land \neg \exists y (x \in \text{Sm} \land x \neq s \land x \text{fr} s)\}$$

Df 1.4

$$\text{Snc} = \{s : s \in \text{Sm} \land \exists y (x, y \in \text{Sm} \land x \neq s \land y \neq s \land x \text{fr} s \land y \text{fr} s \land x \text{fr} y \land \neg \exists z (z \text{fr} y \land z \text{fr} s)\}$$

According to these definitions, within a simplex sentence no constituent phrase is a sentence. A complex sentence consists of at least two sentences which are in the relation of determination. Thus, our definition of complex sentences refers exclusively to sentences constructed hypotactically.

Last on the list of our primitive terms is the relation of phrasal determination (frd), which binds phrases. The formula $x \text{frd} y$ may be read: a phrase x is determined by a phrase y, or a phrase y determines a phrase x. The very idea of determination in our approach mirrors the operation of restricting (narrowing down) the range of designation of a phrase by another phrase, the former functioning as determinatum and the latter as determinant. The determinant thus provides some information about its determinatum, or, more correctly, it only selects such information from the informational range designated by the determinatum. The hyperphrase resulting from the fusion of the two phrases bearing the relation frd turns out to be a hyponym of the determinatum itself. This is why determination lies at the basis of formation of more complex lingual signs (hypotactic constructions) out of simplex ones. Consequently, the hypotactic structure rests upon the determinational one.

Example: For the sake of exemplification of phrasal determination, let us avail ourselves of the sentence: A talented student of physics quickly solved this problem within which the following pairs of phrases, among others, are bound by the relation frd: (a student, talented), (a student of physics), (solved, quickly), (solved, problem), (solved this problem), (a student of physics, solved this problem), (a talented student of physics, quickly solved this problem).

The phrases occupying the first position in these pairs function as determinata, and those occupying the second position as their determinants. The relation frd underlies thus attributive and circumstantial, as well as predicative syntagmas.

In terms of the relation frd we can define the following three useful notions, i.e.:

(i) the relation of word determination (wdt),
(ii) the relation of being determinatum absolutum of (dtma), and
(iii) the relation of being a proper hypophrase of (frp).

The definitions introducing these relations will be formulated as follows:

Df 1.5

$$\text{wdt} = \{(x, y) : x, y \in \text{Wrd} \land x \text{fr} y\}$$

Df 1.6

$$\text{dtma} = \{(x, y) : x \in \text{Wrd} \land x \text{fr} y \land \neg \exists z (z \text{fr} y \land z \text{frd} x)\}$$

Df 1.7

$$\text{frp} = \{(x, y) : y \in \text{frs} \land x \text{fr} y \land (x = \text{dtma}(y) \lor \text{dtma}(x) = \text{dtma}(y))\}$$

The relation wdt connecting exclusively words, and without concerning syntagmas, is thus but a special case of the relation frd. The relation dtma holds between a word x and a phrase y such that x is a hypophrase of y, and it does not determine any other phrase within y. Since the relation dtma is the function:

1.2

$$\text{dtma} : \text{frs} \rightarrow \text{wrd}$$

the symbol $\text{dtma}(y)$ will be used to denote the unique x being the determinatum absolutum of a phrase y. And, finally, the relation frp binds two phrases x and y, such that the former is a hypophrase of the latter and, additionally, the former is either the determinatum absolutum of the latter, or both have the same determinatum absolutum. The predecessor of the relation frp could be called a proper hypophrase, and its successor — a proper hyperphrase.

The following simple corollaries may be inferred from the above definitions:

1.3

$$\text{wdt} \subseteq \text{wrd} \times \text{wrd}$$

1.4

$$\text{wdt} \subseteq \text{frd}$$

1.5

$$\text{dtma} \subseteq \text{wrd} \times \text{frs}$$
1.6 \(\text{frp} \subseteq \text{fr} \)

1.7 \(x \text{ frp } y \rightarrow x = \text{dtma}(y) \lor \text{dtma}(x) = \text{dtma}(y) \)

1.8 \(x \text{ frp } y \rightarrow \sim \exists z (z \text{ fr } y \land z \text{ fdt } x) \)

2. THE SYSTEM OF AXIOMS

The axiom system describing some of the relevant properties of the primitive terms should provide, among others, for the following propositions:

Ax 2.1 \(\text{Frs} \subseteq P(\langle \text{Ut} \rangle) \)

Ax 2.2 \(\text{Sn} \subseteq \text{Ut} \)

Ax 2.3 \(\text{fr} \subseteq \text{Frs} \times \text{Frs} \)

Ax 2.4 \(x \text{ fr } y \rightarrow x \text{ P } y \)

Ax 2.5 \(x \text{ fr } x \)

Ax 2.6 \(x \text{ fr } y \land y \text{ fr } z \rightarrow x \text{ fr } z \)

Ax 2.7 \(x \text{ fr } y \land y \text{ fr } x \rightarrow x = y \)

Ax 2.8 \(x \in \text{Wrd} \rightarrow \exists (u \in \text{Frs} \land x \neq u \land x \text{ fr } x) \)

Ax 2.9 \(x \in \text{Stg} \rightarrow \forall (y, z \in \text{Wrd} \land y \neq z \land y, z \in \text{fr} \text{ x}) \)

Ax 2.10 \(\text{fdt} \subseteq \text{Frs} \times \text{Frs} \)

Ax 2.11 \(\sim x \text{ fdt } x \)

Ax 2.12 \(x \text{ fdt } y \rightarrow \sim y \text{ fdt } x \)

Ax 2.13 \(x \text{ fdt } y \land y \text{ fdt } z \rightarrow \sim x \text{ fdt } z \)

Ax 2.14 \(x \text{ fdt } y \rightarrow \sim (z \in \text{fr } x \land z \text{ fdt } y) \)

Ax 2.15 \(x \text{ fdt } z \land y \text{ fdt } z \land x \text{ fr } y \rightarrow \text{dtma}(x) = \text{dtma}(y) \)

Ax 2.16 \(x \text{ fdt } y \rightarrow x \text{ fr } x \land x \text{ fr } y = \emptyset \)

Ax 2.17 \(x \text{ fdt } y \rightarrow \forall (z \in \text{Stg} \land z = \text{stg}(x, y)) \)

Ax 2.18 \(x \text{ fdt } y \rightarrow x \text{ frp } \text{stg}(x, y) \)

Ax 2.19 \(x \text{ fdt } y \rightarrow \exists (u \text{ frp } x \land y \text{ fdt } y \rightarrow u \text{ fdt } y) \)

Ax 2.20 \(x \text{ fdt } y \rightarrow \exists (x \text{ frp } u \land y \text{ fdt } v) \)

Ax 2.21 \(x \in \text{Stg} \rightarrow \forall (y \text{ fdt } z \land \text{stg}(y, z) = x) \)

Axiom 2.21 provides for any hypotactic syntagma only one binary division into phrases which exhaust completely this syntagma and bear the relation \(\text{fdt} \).

By presenting the primitive terms and axioms, the foundation for an axiomatic theory of determination has been laid. Within this theory we intend to define precisely some fundamental semanto-syntactic notions which are indispensable to develop a certain fragment of the conceptual apparatus of theoretical syntax.
3. IMMEDIATE CONSEQUENCES OF AXIOMS

Before we proceed further with more basic problems, let us here formulate some simple corollaries which are immediately obtainable from the above axioms.

3.1 \[x \text{ frp } x \]
3.2 \[x \text{ frp } y \land y \text{ frp } z \rightarrow x \text{ frp } z \]
3.3 \[\text{dima}(x) \text{ frp } x \]
3.4 \[x \text{ frp } z \land y \text{ frp } z \rightarrow \text{dima}(x) = \text{dima}(y) \]
3.5 \[x \text{ fdt } y \land y \text{ fdt } z \rightarrow x \text{ fdt } z \]
3.6 \[x \text{ fdt } \text{dima}(y) \rightarrow x \text{ fdt } y \]
3.7 \[x \text{ fdt } y \land x \in \text{Wrd} \land y \in \text{Stg} \rightarrow y \text{ wdt } \text{dima}(y) \]
3.8 \[x \text{ wdt } y \land y \text{ wdt } z \rightarrow x \text{ fdt } \text{stg}(y, z) \]
3.9 \[x \text{ fdt } y \land x \in \text{Stg} \rightarrow \text{dima}(x) \text{ fdt } y \]
3.10 \[x \text{ fdt } x \land \text{stg}(x, y) \text{ fdt } z \rightarrow x \text{ fdt } z \]
3.11 \[x \text{ fdt } y \rightarrow \text{frp}(x \rightarrow z \text{ fdt } y) \]
3.12 \[x \text{ fdt } y \land x \in \text{Stg} \rightarrow \text{dima}(x) \text{ wdt } \text{dima}(y) \]
3.13 \[x \text{ fdt } y \land y \text{ frp } (Y) \rightarrow x \text{ fdt } \text{stg}(Y) \]
3.14 \[x \text{ fdt } y \rightarrow \bigvee_{u, v \in \text{frp}} u \land y \land u \land v \text{ frp } \text{stg}(x, y) \land \text{stg}(u, y) = \text{stg}(x, y) \land u \text{ fdt } v \]
(Ax 2.17, Ax.21)
3.15 \[x \text{ fdt } y \land y \text{ frp } z \rightarrow x \text{ fdt } z \]
(Ax 2.20)

The above theorems should also be instrumental in understanding the axioms themselves.

4. HYPOTACTIC COHESION

Phrases not only determine other phrases or are determined by them, but also result in syntagms, which may exhibit a different degree of compactness or fusion. This fusion could be conceived of as the force of hypotactic cohesion which binds some phrases more strongly than others. This force, in turn, will find reflection in the relations of a smaller degree of hypotactic cohesion.

However, the hypotactic cohesion is at least a bispectal phenomenon, i.e. it can be inspected from at least two different angles, which will be illustrated by the following situation. Let us suppose that determination relation between the phrases \(x, y\) and \(z\), being constituents of the same hyperphrase, are as follows:

\[x \text{ fdt } y \text{ and } \text{stg}(x, y) \text{ fdt } z, \text{ whence we infer that also } x \text{ fdt } z \text{ holds (cf. Ax 2.19).} \]
The above theorems establish a net of interdependences among the relations \(fdt, frp, fr, stg \) and \(\prec_k \). However, the most essential feature of the relation \(\prec_k \) seems to be expressed by theorem 4.8, which states that the syntaga made up of the pair \((u,v)\) of phrases being the successor of \(\prec_k \) forms a proper hypophrase either of \(x \) or \(y \), such that the pair \((x,y)\) forms the predecessor of \(\prec_k \).

Df 4.2 \[\prec_k^* := \{(x,y),(u,v)\} : x \ fdt \ y \wedge u \ fdt \ v \wedge [(stg(u,v) \ fdt \ y \wedge u=x) \vee (x \ fdt \ stg(u,v) \wedge u=y)] \]

In light of this definition, phrases \(x \) and \(y \) are hypotactically less cohesive than phrases \(u \) and \(v \), in symbols: \((x,y) \prec_k^*(u,v) \), if and only if the syntaga consisting of \(u \) and \(v \) is determined by \(y \) while \(u \) equals \(x \) or this syntaga determines \(x \) while \(u \) equals \(y \).

Example: In conformity with definition 4.2, the pair of phrases \((a student, of physics)\) is hypotactically less cohesive than the pair of phrases \((a student, talented)\). Similarly, the pair of phrases \((a student, solved)\) is less cohesive than \((solved, problem)\).

The following corollaries can be inferred:

4.17 \[\prec_k^* \prec_k \ fdt \times \ fdt \]
4.18 \[(x,y) \prec_k^*(u,v) \rightarrow x \ fdt \ y \wedge u \ fdt \ v \]
4.19 \[(x,y) \prec_k^*(u,v) \rightarrow u=x \vee u=y \]
4.20 \[(x,y) \prec_k^*(u,v) \rightarrow [(u \ fdt \ x) \wedge (y \ fdt \ u)] \wedge [(x \ fdt \ (u,v)) \prec_k (u,v)] \]
4.21 \[x \ fdt \ y \wedge (x,y) \ fdt \ z \rightarrow (x,z) \prec_k^*(x,y) \]
4.22 \[x \ fdt \ y \wedge z \ fdt \ stg(x,y) \rightarrow (x,y) \prec_k^*(x,y) \]

The relation \(\prec_k^* \) thus mirrors a different aspect of hypotactic cohesion than the relation \(\prec_k \) does.

5. IMEDIATE PHRASAL CONSTITUENCY

One aspect of the force of hypotactic cohesion has been mirrored in the relation \(\prec_k \). Another aspect of this force, closely related to the former, will be captured by the relation of \textit{immediate phrasal constituency} symbolized by \(ifc \) and defined as follows:

Df 5.1 \[ifc = \{(x,y),(z) : x \ fdt \ y \wedge stg(x,y) = z\} \]

In light of this definition, two phrases \(x \) and \(y \) are immediate phrasal constituents of a phrase \(z \), in symbols: \((x,y) ifc z\), if and only if \(x \) and \(y \) bear the relation of determination, and \(z \) consists exclusively of \(x \) and \(y \).

Example: Two phrases \textit{a talented student} and \textit{of physics} are immediate phrasal constituents of the phrase \textit{a talented student of physics}.

While deciding upon the degree of hypotactic cohesion, we compare two pairs of phrases which are capable of forming a hyperphrase. While asking about the immediate phrasal constituents, we have at our disposal a phrase and are looking for two of its hypophrases. Thus the relations \(\prec_k \) and \(ifc \) present two related ways of inspecting the determinational structure of syntagmas, although they have been defined independently of each other.

Since according to Axiom 2.17 two phrases being in the relation \(fdt \) create exactly one syntagma, and since according to Axiom 2.21 each syntagma allows for exactly one binary division into constituent phrases which are in the relation \(fdt \) and exhaust this syntagma completely, both the relation \(ifc \) as well as its converse \(ifc \) are, respectively the functions:

5.1 \[ifc: fdt \rightarrow Stg \]
5.2 \[ifc: Stg \rightarrow fdt. \]

Consequently, the symbols \(ifc(x,y) \) and \(ifc(z) \) may be used; the former denoting the syntagma \(z \) consisting of the phrases \(x \) and \(y \) and the latter denoting the immediate constituents of \(z \).

The following corollaries may be inferred:

5.3 \[(x,y) ifc z \rightarrow x \ fdt \ y \]
5.4 \[(x,y) ifc z \rightarrow stg(x,y) = z \]
5.5 \[(x,y) ifc z \rightarrow x \ frp z \wedge y fr z \]
5.6 \[x \ fdt \ y \rightarrow (x,y) ifc stg(x,y) \]
5.7 \[(x,y) ifc z \rightarrow \bigwedge_{u,v} [u \ frp x \wedge v fr x \wedge u \ fdt \ y \rightarrow (x,y) \prec_k (u,v)] \]
5.8 \[(x,y) ifc z \rightarrow \bigwedge_{u,v} [u \ frp y \wedge v fr y \wedge u \ fdt \ y \rightarrow (x,y) \prec_k (u,v)] \]
5.9 \[(x,y) ifc z \rightarrow \bigvee_{u,v} [u \neq x \wedge v \neq y \wedge u \wedge v ifc z] \]
5.10 \[(x,y) ifc z \rightarrow \bigvee_{u,v} [u \frp z \wedge v fr z \wedge (u,v) \prec_k (x,y)] \]

The first two of the above theorems immediately follow from definition 5.1. Theorem 5.5 says that immediate constituents of a phrase are its hypophrases, and theorem 5.6 - that phrases connected by the relation \(fdt \) are immediate constituents of the syntagmas which results from the fusion of these phrases. The last three theorems state important interdependences between the relations \(ifc \) and \(\prec_k \). Theorem 5.9 is a generalization of 5.7 and 5.8. It says that if two phrases \(x \) and \(y \) are immediate constituents of a syntagma \(z \), then there are no other immediate constituents of \(z \).

PREDICATION: SUBJECT PHRASE – PREDICATE PHRASE

Discussing predicative structure, we shall operate with two relations of predication; one being more specific and the other more comprehensive. The former will be denoted by the symbol \(pd^* \), and its definition will be formulated along the following lines:
Df 6.1 \(pd^* = \{(x,y); \forall s \in Sns \land x \, frp \, s \land y \, fr \, s \land stg(x,y) = s \land x \, fdt \, y\} \)

In light of this definition, the two phrases \(x \) and \(y \) bear the relation of predication, in symbols: \(x \, pd^* \, y \), if and only if \(x \) is a proper hypphrase of a simple sentence \(s \), \(y \) is a hypphrase of \(s \), both completely exhaust \(s \) and is determined by \(y \). Thus, it is obvious that the relation of predication \(pd^* \) is reducible to the relation of determination.

The following corollaries may be easily deduced:

6.1 \(pd^* \subset frp(Sns \times frp(Sns) \land x \, frp \, stg(x,y) \land y \, fr \, stg(x,y) \land x \)

6.2 \(x \, pd^* \, y \to x \, frp \, stg(x,y) \land y \, fr \, stg(x,y) \land x \)

6.3 \(x \, pd^* \, y \to x \, fdt \, y \)

6.4 \(x \, pd^* \, y \to x \, fdt \, y \)

6.5 \(pd^* \subset fdt \)

6.6 \(x \, pd^* \, y \leftrightarrow \forall s \in Sns \land (x,y) \iff s \) \(x \)

6.7 \(x \, pd^* \, y \leftrightarrow \forall u,v \in Sns \land u \neq x \land v \neq y \land (u,v) \iff stg(x,y) \land x \)

6.8 \(x \, pd^* \, y \leftrightarrow \forall u,v \in Sns \land u \neq x \land v \neq y \land (u,v) <_\kappa (x,y) \land x \)

The last three theorems state some of the interdependences between the relations \(pd^* \) and \(ifc \) on one hand, and between \(pd^* \) and \(<_\kappa \) on the other. Two phrases \(x \) and \(y \), being bound by the relation \(pd^* \), are at the same time the only immediate phrasal constituents of the sentence resulting from the combination of these phrases. They also display the smallest degree of hypotactic cohesion within this sentence.

The predeccessor of the relation \(pd^* \) will be called the subject phrase and its successor – the predicate phrase. The relation of being the subject phrase of \(sf \), and the relation of being the predicate phrase of \(pf \) will be formally introduced in the following way:

Df 6.2 \(sf = \{(x,s); \forall s \in Sns \land x \, pd^* \, s = stg(x,y)\} \)

Df 6.3 \(pf = \{(x,s); \forall y \in Sns \land x \, pd^* \, s = stg(y,x)\} \)

Since the converses of the relations \(sf \) and \(pf \) are the functions:

6.9 \(sf : Sns \to frp(Sns) \)

6.10 \(pf : Sns \to frp(Sns) \)

we are entitled to use the symbols \(sf(s) \) and \(pf(s) \) to denote the subject phrase of simplex sentence \(s \), and the predicate phrase of \(s \), respectively. These two phrases are immediate constituents of \(s \), and they exhibit the smallest degree of hypotactic cohesion which, in turn, finds expression in the following theorems:

6.11 \(s \in Sns \to (sf(s), pf(s)) \iff s \land x \land y \land fr \land s \land (x,y) <_\kappa (sf(s), pf(s)) \)

6.12 \(s \in Sns \to (sf(s), pf(s)) \)

6.13 \(s \in Sns \to \forall x,y \in \kappa (x,y) \land fr \land s \land (x,y) <_\kappa (sf(s), pf(s)) \)

The subject phrase does not determine any other phrase within a simplex sentence, i.e. it always functions as a proper hypphrase, necessarily incorporating determinatum absolutum. These statements can be formally expressed by means of the following theorems:

6.14 \(x \, sf \, s \to x \, frp \, s \)

6.15 \(x \, sf \, s \to \delta tm(s) \, frp \, x \)

The definitions formulated below introduce in a formal manner:

(i) the set of all subject phrases \((sf) \), and

(ii) the set of all predicate phrases \((pf) \).

Df 6.7 \(sf = sf \subset Sns \)

Df 6.8 \(pf = pf \subset Sns \)

The subject phrase should be kept distinct from the subject, and the predicate phrase – from the predicate. The relation of being the subject of \(sb \), and the relation of being the predicate of \(pr \) will be defined, respectively, as follows:

Df 6.9 \(sb = \{(x,s); x = \delta tm(sf(s))\} \)

Df 6.10 \(pr = \{(x,s); x = \delta tm(pf(f))\} \)

In light of these definitions, the subject of a sentence is identical with the determinatum absolutum of the subject phrase of this sentence, and the predicate of a sentence is identical with the determinatum absolutum of the predicate phrase of this sentence.

The set of all subjects \((SB) \) and the set of all predicates \((PR) \) can be now defined, respectively, as follows:

Df 6.11 \(SB = sb \subset Sns \)

Df 6.12 \(PR = pr \subset Sns \)

Predication is equivalent with bringing about the hypotactic polarization of a sentence into a subject phrase and a predicate phrase, which exhaust this sentence completely. The obvious structural caesura interjecting itself between these two phrases, which is independent of linear word order, specifies the predicative dichotomy of a sentence. This dichotomy is clearly semantically and syntactically based, which ultimately derives from the semantic and syntactic foundation of the determination itself. We shall also assume that each sentence, however improbable and objectionable it might seem, not only designates a certain fragment of reality and conveys meaning, but also shows how it is constructed with respect to the signification at issue.

Segments of reality are split following the dualistic principle: entity – its properties. The former is designated by a subject phrase and the latter by
a predicate phrase. Consequently, the ascription of the intended properties to an entity is achieved by means of determining the subject phrase by the predicate phrase, whereby, at the same time, the range of designation of the subject phrase is appropriately restricted. Informally, we may say that a subject phrase designates an entity, which is spoken of within a sentence, and a predicate phrase designates that which is said about the entity spoken of.

The very essence of predication thus originates from its being but one particular case of determination. By describing a certain property attributed to the entity designated by a subject phrase, the predicate phrase says something about the former. Obviously, the predicative structure associated with a sentence in the framework of the theory of determination will often differ from the logical (i.e. predicate) structure associated with this sentence in terms of the predicate theory. However, we shall not go into this problem here.

7. PREDICATION: THEME – RHEME

The relation of predication is by no means limited only to phrases within simplex sentences. A simplex sentence, as a whole, may function in turn as determinatum or determinant. Two cases may be distinguished:

(i) a sentence is determined by another sentence,
(ii) a phrase which is not a sentence is determined by a sentence.

To illustrate the former case we shall avail ourselves of the following compound sentence.

(7a) The young man drove a car, while the storm was raging.

The main clause The young man drove a car is determined by the subordinate clause while the storm was raging, i.e. the latter provides some information about the former. The main clause thus acquires determinational status similar to that of a subject phrase. In order to describe the state of things designated by this sentence, we can construct sentences in which the determinational relationships are shaped in different ways and which may be exemplified, among others, by the following:

(7b) The storm was raging, while the young man drove a car.
(7c) A car was driven by the young man, while the storm was raging.
(7d) The young man drove a car during a raging storm.
(7e) The young man’s drive in a car was during a raging storm.

Thus, to a certain permissible extent, the determinational relationships may be changed relatively freely within a certain lexical framework.

Let us now turn attention to expressions in which a phrase, while not being a sentence, is determined by a sentence. To begin with, let us consider the possibilities of changing determinational and predicative relationship within the following simplex sentence:

(7f) The supervisor inspected work in the factory.

As it should be remembered, the entity spoken about in a simplex sentence is that designated by a subject phrase. In the case of (7f), it is the entity designated by the supervisor. But one would be justified in asking the question: Is there always an obligation to speak about this entity while constructing the expressions with the purpose of describing the state of things as designata (7f)? In other words, must the supervisor always function as subject phrase? Of course not! We can speak about the designata of other phrases as well. This may be reflected in the possibility of forming lexically and translationally equivalent expressions (paraphrases) such as the following:

(7g) Work in the factory was inspected by the supervisor.
(7h) The inspection of work by the supervisor was done in the factory.
(7i) It was in the factory that the supervisor inspected work.

As the above sentences show, each word (or its homolexic variant) of the initial sentence (7f) could be the determinatum absolutum of an appropriate proper phrase functioning as a subject phrase, except for in the factory. However, the latter possibility seems to be available in Polish, where the translational equivalent of (7i) is a follows:

(7k) W fabryce, to nadzorca skontrolował pracę. (Or W fabryce – nadzorca skontrolował pracę.)

In this sentence the phrase w fabryce “in the factory” assumes the status of subject phrase, and the sentence to nadzorca skontrolował pracę “The supervisor inspected work” - the status of predicate phrase. Thus, in (7k) the whole sentence determines a phrase which itself is not a sentence.

An expression consisting of a phrase, which is not a sentence and functions as a subject phrase, and of a sentence functioning as predicate phrase will be called a phraseosentence. Before we formally define this notion, let us first introduce an auxiliary term, namely, the set of all phrasons, symbolized by \(Frn \).

Df 7.1 \(Frn = \{ x : x \in (Frs \cdot Sn) \wedge \exists \forall (y \in (Frs \cdot y \in Sn)) \} \)

According to this definition, phrasons are those phrases which are neither sentences nor incorporate sentences. The following corollaries may be inferred:

7.1 \(Frn \subseteq Frs \)
7.2 \(Frn \cap Sn = \emptyset \)
7.3 \(f \in Frn \rightarrow y \in (Frs \cdot f \rightarrow y \in Sn) \)
The set of all phraseosentences (Fsn) will be defined in the following way:

\[
\text{Df. 7.2 } \text{Fsn} = \{ u : u \in Ut \land \bigvee_x (x \in \text{Frn} \land s \in \text{Sns} \land x \text{ fdt} s \land \text{stg}(x,s) = u) \}
\]

In light of this definition, a phraseosentence consists of a phrasen being determined by a sentence. However, this definition seems to be inadequate to the extent that it does not include utterances consisting of a sentence being determined by a phrasen among phraseosentences.

Phraseosentences as defined above abound especially in such languages as Japanese and Korean, and they may be demonstrated by means of the following examples:

Japanese:

(7l) Kare-wa Eigo-ga wakarimashu. 'He understands English.'
(7m) Zoo-wa hana-ga nagai. 'The elephant has a long trunk.'
(7n) Niwa-de-wa sakura-ga saita. 'A cherry-tree bloomed in the garden.'

Korean:

(7o) Kujun mori-ga ap'uda. 'He has a headache.'
(7p) K'okkiri-nun k'o-ga kilda. 'The elephant has a long trunk.'
(7q) Pom-nun kochi-i p'inda. 'In the spring flowers are blooming.'

The peculiarity of the above phraseosentences can be better sensed, although only approximately, when we are exposed to their literal translations which are as follows:

(7l) As for him, English is understood.
(7m) As for the elephant, the trunk is long.
(7n) As for in the garden, a cherry-tree bloomed.
(7o) As for him, the head aches.
(7r) As for in the spring, flowers are blooming.

Let us now adduce Japanese examples of nominalized phraseosentences occurring within complex sentences:

(7s) Kare-to-wa hansanakatta koto-ga zannen desu. 'The fact that I did not speak to him is regrettable.'
(7t) Kanjojo-wa daigaku-de Nihongo-o oshieta koto-ga arimasu. 'She has taught Japanese at the university.'

Are phraseosentences themselves as well? Without giving a decisive answer here, however, we are convinced that their structure seems to be sufficiently distinct to justify singling them out as a separate category of utterances. What we would like to suggest next is to subsume sentences and phraseosentences under the more comprehensive hyperonymous term of nuntiations, which is intended to refer to a syntactic category of utterances rather than to a pragmatic one. Since the terms subject phrase and predicate phrase have been confined exclusively to simplex sentences, we would further suggest the use, with respect to nuntiations, of the terms theme and rhyme in an analogous sense. Also, the relation of predication should be conceived of in a more comprehensive way.

The definitions formulated below introduce the following four notions:

(i) the set of all nuntiations (\(Nu \)),
(ii) the relation of predication (\(pd \)),
(iii) the relation of being a theme of (\(th \)),
(iv) the relation of being a rhyme of (\(rh \)).

\[
\text{Df 7.3 } Nu = \text{Sns} \cup \text{Fsn}
\]
\[
\text{Df 7.4 } pd = \{ (x,y) : \bigvee (n \in Nu \land x \text{ frp} n \land y \text{ fr} n \land \text{stg}(x,y) = n \land x \text{ fdt} y) \}
\]
\[
\text{Df 7.5 } th = \{ (x,n) : n \in Nu \land \bigvee (x \text{ pd} y \land \text{stg}(x,y) = n) \}
\]
\[
\text{Df 7.6 } rh = \{ (x,n) : n \in Nu \land \bigvee (y \text{ pd} x \land \text{stg}(y,x) = n) \}
\]

The understanding of the sense of each of the above definitions should not present any difficulty. The following corollaries can be easily inferred:

\[
7.4 \quad pd \subset \text{Frn} \times \text{Frn}
\]
\[
7.5 \quad \text{th} : Nu \rightarrow \text{Frn}
\]
\[
7.6 \quad \text{rh} : Nu \rightarrow \text{Frn}
\]
\[
7.7 \quad pd^* \subset \text{pd}
\]
\[
7.8 \quad sf \subset \text{th}
\]
\[
7.9 \quad pf \subset \text{rh}
\]
\[
7.10 \quad pd \subset \text{fdt}
\]
\[
7.11 \quad n \in \text{Nu} \rightarrow (\text{th}(n), \text{rh}(n)) \iff n
\]
\[
7.12 \quad n \in \text{Nu} \rightarrow \bigvee (x \text{ fr} n \land y \text{ fr} n \land (x,y) < \text{th}(n), \text{rh}(n))
\]
\[
7.13 \quad x,y \in \text{Frn} \land x \text{ pd} y \rightarrow \text{stg}(x,y) \in \text{Nu}
\]
\[
7.14 \quad x \text{ th} n \rightarrow x \text{ frp} n
\]
\[
7.15 \quad x \text{ th} n \rightarrow \text{th}(n) \text{ frp} \text{ th}(n)
\]

The relation of predication \(pd^* \) thus appears as one particular case of the relation \(pd \) binding theme and rhyme, which in turn are more comprehensive than subject phrase and the predicate phrase, respectively.

The following two definitions introduce:

(i) the set of all themes (\(Th \)), and
(ii) the set of all rhymes (\(Rh \)).

\[
\text{Df 7.7 } Th = \text{th} \subset \text{Nu}
\]
\[
\text{Df 7.8 } Rh = \text{rh} \subset \text{Nu}
\]
The differences in the predication structure of the three kinds of nuntiation being distinguished above become especially evident if we compare the following three theorems:

7.16 \(s \in Sns \rightarrow \mathfrak{h}(s) \in Frn \wedge \mathfrak{r}(s) \in Frn \)

7.17 \(f \in Frn \rightarrow \mathfrak{h}(f) \in Frn \wedge \mathfrak{r}(f) \in Sns \)

7.20 \(s \in Sns \rightarrow \mathfrak{h}(s) \in Sns \wedge \mathfrak{r}(s) \in Sns \)

The differences in question may also be visualized in the following graphs, in which \(n \) symbolizes a nuntiation, \(t \) and \(r \) its theme and rheme, respectively, \(f \) - a phrasen, and \(s \) - a sentence.

Simplex sentence	Phraseosentence	Compound sentence
\(n(=s) \) | \(n(=fs) \) | \(n(=s) \)
\(t(=f_1) \) | \(r(=f_2) \) | \(t(=f_1) \)
\(t(=f_2) \) | \(r(=f_3) \) | \(r(=s_1) \)
\(t(=s_1) \) | \(r(=f_2) \) | \(t(=s_1) \)
\(t(=f_3) \) | \(r(=s_2) \) | \(t(=f_3) \)
\(t(=s_2) \) | \(r(=f_4) \) | \(r(=f_4) \)

Of course, the availability of the above types of nuntiations as well as their actual occurrence may vary from language to language.

8. INDICATION OF THEME AND RHEME IN JAPANESE AND KOREAN

After having defined the notions of subject/predicate and theme/rheme there emerges, in a natural way, the question of the lingual indicators (markers) of these entities, or to express it differently, of how we recognize them within nuntiations. This problem is an extensive one and we are not going to deal thoroughly with it now. Instead, we shall only briefly hint at some aspects of it.

In many languages, the function of indicating the subject of a sentence is most commonly accomplished by the nominative case. However, in most languages the nominative is not distinguished morphologically from other cases in an absolute way, i.e. it may formally coincide with other cases of the same noun. Since the concepts of theme/rheme are more comprehensive than the concepts of subject/predicate, the methods of indicating the latter will be included in those of the former.

A relatively consistent method of theme/rheme indication operates in Japanese and Korean, where special particles are used. In Japanese there is -wa and -ga, and in Korean -nun, in, -ga, -i. Rhemes do not exhibit as their markers any segmental morphemes. What deserves particular attention is that nouns not only in casu recto but also in casu obliquus may appear as themes of nuntiations. For the sake of illustration, let us adduce below additional examples.

Jap. (8a) Sensei-wa daigaku-e shiden-de kimasu.
'SThe teacher is coming to the university by a tramcar.'

(8b) Daigaku-e-wa sensei-ga shiden-de kimasu.
'As for the university, the teacher is coming by a tramcar.'

(8c) Shiden-de-wa sensei-ga daigaku-e kimasu.
'As for by the tramcar, the teacher is coming to the university.'

Kor. (8d) Na-nun k'u-rul ejjokke poasso. 'I saw him yesterday.'

(8e) Pada-ga kipta. 'The sea is deep.'

(8f) Pyog-e-nun k'urim-i kölyö isso.
'The pictures are hanging on the wall.' (lit. As for on the wall, the pictures are hanging.)

In Japanese the process of transformation of phraseosentences into sentences, at least to a certain extent, seems to be operating. This is achieved by replacing the ignitive subject of the former by the corresponding object. As a result, a construction of the type: Sensei-wa Eigo-ga wakarimasu is changed to a construction of the type: Sensei-wa Eigo-wo wakarimasu. Such an operation also leads to the simplification of the two-level predicative structure into the one-level one.

The research into the ways of indication of theme and rheme may bring typologically interesting results.

9. CONCLUDING REMARKS

The theory of determination surveyed above seems to offer an adequate framework within which, in terms of the relation of phrasal determination, many fundamental notions can be defined, such as: the relation of a smaller degree of hypotactic cohesion, the relation of immediate phrasal constituency, the relation of predication, the subject phrase/predicate phrase, and the theme/rheme. As it is easily observed, the subject phrase need not coincide with the theme and the predicate phrase with the rheme. In addition, the subject phrase can cooccur with the theme on one hand, and the predicate phrase with the rheme on the other, within the same nuntiation.
The relation of phrasal determination turns out to be a powerful device capable of establishing natural links among fundamental syntactic concepts. Some other related topics of our theory will be taken up elsewhere.

REFERENCES

dam: John Benjamins Publishers.